9FM0/4C: Further Mechanics 02 Mark scheme

Question	Scheme				Marks	
2(a)		$A B C D$	$E F G$	T		
	Mass ratio	$30 a^{2}$	$4.5 a^{2}$	$25.5 a^{2}$		
	$\begin{gathered} \mathrm{C} \text { of } \mathrm{M} \text { from } \\ A B \end{gathered}$	$2.5 a$	$2 a$	x		
	Mass ratios				B1	1.2
	Distances				B1	1.1b
	Moments equation				M1	2.1
	$30 a^{2} \times 2.5 a-4.5 a^{2} \times 2 a=25.5 a^{2} \times x$				A1	1.1b
	$x=\frac{75-9}{25.5} a\left(=\frac{2 \times 66}{51} a\right)=\frac{44}{17} a$			Given Answer	A1*	2.2a
					(5)	
2(b)	Moments about $A: 85 \times \frac{44}{17} a=F \times 6 a$				M1	3.1a
	$F=\frac{85 \times 44}{17 \times 6}=\frac{110}{3}$				A1	1.1b
	Use of Pythagoras: $\quad R^{2}=85^{2}+\left(\frac{110}{3}\right)^{2}$				M1	1.1b
	$\|R\|=92.6$ (N)				A1	1.1b
					(4)	
Total 9 marks						
Notes:						
2a	$1^{\text {st }} \mathrm{B} 1$	Mass ratios (all 3)				
	$2^{\text {nd }} \mathrm{B} 1 \quad$ D	Distances from $A B$ or from a parallel axis				
	M1 M	Moments about $A B$ or a parallel axis. Terms dimensionally consistent. Must be subtracting.				
	$1^{\text {st }} \mathrm{A} 1$	Correct unsimplified equation				
	$2^{\text {nd }} \mathrm{A} 1 *$ S	Show sufficient working to justify given answer				
2b	$1^{\text {st }} \mathrm{M} 1$	Moments about A. Dimensionally correct. Condone use of 85 g for 85 .				
	$1^{\text {st }} \mathrm{A} 1$	Correct F - any equivalent form.				
	$1^{\text {st }} \mathrm{M} 1$	Use of Pythagoras with their F to find resultant. Condone use of 85 g for 85 .				
	$2^{\text {nd }} \mathrm{A} 1$	93 or better ($92.57129 \ldots \ldots$)				

Question		Scheme	Marks	
4(a)	Total mass $=\int_{0}^{30} \pi y^{2} \times \frac{x}{100} \mathrm{~d} x\left(=\frac{\pi}{36} \int_{0}^{30} \frac{x^{3}}{100} \mathrm{~d} x\right) \quad$ M1			2.1
	$=\frac{\pi}{36}\left[\frac{x^{4}}{400}\right]_{0}^{30}$		A1	1.1b
		$=\frac{\pi}{36} \times \frac{810000}{400}=\frac{225 \pi}{4}(\mathrm{~kg}) *$	A1*	1.1b
			(3)	
(b)	Take moments about the vertex: $\int_{0}^{30} x \times \pi y^{2} \times \frac{x}{100} \mathrm{~d} x$		M1	3.4
		$=\frac{\pi}{36}\left[\frac{x^{5}}{500}\right]_{0}^{30}(=1350 \pi)$	A1ft	1.1b
		$\Rightarrow 1350 \pi=\frac{225 \pi}{4} d$	M1	3.4
		$d=24(\mathrm{~m})$	A1	1.1 b
			(4)	
Total 7 marks				
Notes:				
4 a	M1	Use integration (convincing attempt - at least one power increases)		
	$1^{\text {st }}$ A1	Correct integration		
	$2^{\text {nd }} \mathrm{A} 1^{*}$	Use limits and show sufficient working to justify given answer.		
4b	$1^{\text {st }} \mathrm{M} 1$	Use the model to find the moment about the base (usual rules for integration) Follow their y		
	$1^{\text {st }} \mathrm{A} 1$	Correct integration for their $y=m x$		
	$2^{\text {nd }}$ M1	Use the model to complete the moments equation. Require $\frac{225 \pi}{4}$ and their 1350π used correctly.		
	$2^{\text {nd }} \mathrm{A} 1$	Correct only		

Question		Scheme	Marks	
5(a)	$F=\frac{k}{x^{2}}$		M1	3.4
	Substitute $x=R, F=m g \Rightarrow m g=\frac{k}{R^{2}}$		M1	1.1b
	$k=m g R^{2} \Rightarrow F=\frac{m g R^{2}}{x^{2}} *$		A1*	2.1
			(3)	
5(b)	$m \ddot{x}=-\frac{m g R^{2}}{x^{2}} \Rightarrow v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{g R^{2}}{x^{2}}$		M1	3.4
	$\Rightarrow \int v \mathrm{~d} v=\int-\frac{g R^{2}}{x^{2}} \mathrm{~d} x$		M1	1.1b
	$\frac{1}{2} v^{2}=\frac{g R^{2}}{x}(+C)$		A1	1.1b
	$\frac{1}{2} g R-\frac{1}{2}(U)^{2}=\frac{g R^{2}}{3 R}-\frac{g R^{2}}{R}$		M1	3.1a
	$(U)^{2}=g R+\frac{4}{3} g R, \quad U=\sqrt{\frac{7 g R}{3}}$		A1	1.1b
			(5)	
5(c)	Appropriate refinement		B1	3.5c
			(1)	
Total 9 marks				
Notes:				
5a	$1{ }^{\text {st }}$ M1	Use the model to express F in terms of x		
	$2^{\text {nd }} \mathrm{M} 1$	Use $x=R$ to determine the value of k		
	A1*	Show sufficient working to justify given answer		
5b	$1{ }^{\text {st }}$ M1	Use the model to write down the equation of motion for the rocket as a differential equation in v and x		
	$2^{\text {nd }} \mathrm{M} 1$	Separate variables and integrate		
	$1^{\text {st }} \mathrm{A} 1$	Correct integration (do not need to see limits or constant of integration)		
	$3{ }^{\text {rd }}$ M1	Complete strategy to find U		
	$2^{\text {nd }} \mathrm{A} 1$	Any equivalent form		
5c	B1	e.g. do not model the rocket as a particle, take air resistance into account, consider the weight of the fuel in the rocket (which reduces).		

Question		Scheme	Marks	AO,
6(a)	Differentiation: $\quad v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ or $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{2} v^{2}\right)$		M1	2.5
	$=\left(9-\frac{3}{x}\right) \times \frac{3}{x^{2}}=\frac{27}{x^{2}}-\frac{9}{x^{3}}$		A1	1.1b
	Substitute for x to find a		M1	1.1b
	$x=3 \Rightarrow a=\frac{8}{3}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$		A1	1.1b
			(4)	
6(b)	Over all strategy to solve the problem		M1	3.1a
	$v=9-\frac{3}{x}=\frac{\mathrm{d} x}{\mathrm{~d} t}\left(=\frac{9 x-3}{x}\right)$		M1	3.4
		$\Rightarrow \int 9 \mathrm{~d} t=\int \frac{9 x}{9 x-3} \mathrm{~d} x=\int 1+\frac{1}{3 x-1} \mathrm{~d} x$	M1	2.1
		$9 t=x+\frac{1}{3} \ln (3 x-1)(+C)$	$\begin{aligned} & \text { A1ft } \\ & \text { A1ft } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		$\Rightarrow 9 T=(3-1)+\frac{1}{3} \ln \frac{9-1}{3-1}, \quad T=\frac{2}{9}+\frac{1}{27} \ln 4^{*}$	A1*	2.2a
			(6)	
Total 10 marks				
Notes:				
6a	$1^{\text {st }}$ M1	Complete strategy involving selection of appropriate form for acceleration, differentiation and substitution.		
	$2^{\text {nd }}$ M1	Differentiate to obtain acceleration		
	$1^{\text {st }}$ A1	Any equivalent form		
	$2^{\text {nd }} \mathrm{A} 1$	Correct answer. 2.3 or better		
6b	M1	Complete strategy e.g. form and solve differential equation and use limits		
	M1	Form differential equation in x and t		
	M1	Separate variables and integrate. Accept equivalent forms		
	A1	At most one error - follow their partial fractions of form $A+\frac{B}{3 x-1}$		
	A1	All correct - follow their partial fractions of form $A+\frac{B}{3 x-1}$		
	A1*	Show sufficient working to deduce given answer		

Question	Scheme	Marks	AO,
7(a)	$\pi \int \frac{1}{16-(x-4)^{2}} \mathrm{~d} x=\pi \int \frac{1}{x(8-x)} \mathrm{d} x=\frac{\pi}{8} \int \frac{1}{x}+\frac{1}{8-x} \mathrm{~d} x$	M1	2.1
	$=\frac{\pi}{8} \ln \frac{x}{8-x}(+C)$	A1	1.1b
	Use of limits to find volume	M1	1.1b
	Volume $=\frac{\pi}{8}\left(\ln \frac{7}{1}-\ln \frac{2}{6}\right)=\frac{\pi}{8} \ln \frac{42}{2}=\frac{\pi}{8} \ln 21$	A1	2.2a
	$\pi \int \frac{x}{16-(x-4)^{2}} \mathrm{~d} x=\pi \int \frac{1}{8-x} \mathrm{~d} x$	M1	2.1
	$=-\pi \ln (8-x)(+C)$	A1	1.1b
	$=-\pi \ln \frac{1}{6}=\pi \ln 6$	A1	1.1b
	Correct strategy to find positon of centre of mass	M1	3.1a
	$\bar{x}=\frac{\pi \ln 6}{\frac{\pi}{8} \ln 21}=\frac{8 \ln 6}{\ln 21} \quad *$	A1*	2.2a
		(9)	
7(b)			
	Use of $\frac{1}{\sqrt{12}}$ and $\bar{x}-2$	B1	1.1b
	About to topple so c of m vertically above the tipping point: $\tan \alpha=\frac{1 / \sqrt{12}}{\bar{x}-2}$	M1	2.2a
	$\alpha=6.08 \ldots$...	A1	1.1b
		(3)	
Total 12 marks			

Notes:		
7a	M1	Use of $\int \pi y^{2} \mathrm{~d} x$ and correct use of partial fractions to reach a recognised form for integration or correct application of formula. Condone if π not seen
	A1	Any equivalent form. Condone if π not seen
	M1	Use of limits. π must be used.
	A1	Any equivalent form
	M1	Integration of $y^{2} x$ wrt x. Accept if π not seen. The Q asks for the exact value, so must see exact working.
	A1	Correct integration. Accept with no π and no constant of integration
	A1	Any equivalent form
	A1*	Deduce the given answer. Ignore any decimal working after exact answer seen
	M1	Use of $\bar{x}=\frac{\int \pi y^{2} x \mathrm{~d} x}{\int \pi y^{2} \mathrm{~d} x}$ with their value for $\int \pi y^{2} x \mathrm{~d} x$
7 b	B1	Correct triangle. 0.2886 and 2.708
	M1	Deduce the position for toppling \& use trig to find α
	A1	Accept $\alpha<6.1^{\circ}, \alpha<6(.0)^{\circ}$ or equivalent (0.106 rads)

Question	Scheme	Marks	
8(a)			
	Complete strategy	M1	3.1a
	KE gained $=$ GPE lost	M1	2.1
	$\frac{1}{2} \times m v^{2}=m g(a-a \cos \theta)$	A1	1.1b
	Circular motion: $\frac{m v^{2}}{a}=$ resultant force towards centre	M1	3.1a
	$\frac{m \nu^{2}}{a}=m g \cos \theta-R$	A1	1.1b
	$\begin{aligned} m g \cos \theta-R & =\frac{2}{a} m g(a-a \cos \theta) \\ & \Rightarrow R=3 m g \cos \theta-2 m g=m g(3 \cos \theta-2)^{*} \end{aligned}$	A1*	2.2a
		(6)	
8(b)	When P leaves the surface, $R=0$	M1	2.4
	$\Rightarrow \cos \theta=\frac{2}{3}$	A1	2.2a
		(2)	
8(c)	Complete strategy	M1	3.1a
	Conservation of energy top to plane	M1	2.1
	$\frac{1}{2} \times m v^{2}=m g \times a \quad v=\sqrt{2 g a}$	A1	1.1b
	Horizontal component $=\cos \theta \times$ (speed on leaving sphere)	M1	3.1a
	$=\sqrt{\frac{2 g a}{3}} \times \frac{2}{3}$	A1	1.1b
	$\begin{aligned} \Rightarrow \cos \alpha= & \frac{\sqrt{\frac{2 g a}{3}} \times \frac{2}{3}}{\sqrt{2 g a}}\left(=\frac{2}{3 \sqrt{3}}\right) \\ & \Rightarrow \text { downwards at } 67.4^{\circ} \text { to the horizontal or } \\ & \text { downwards at } 22.6^{\circ} \text { to the upward vertical } \end{aligned}$	A1	2.2a
		(6)	
Total 14 marks			

